
oposed.
ed and
pheres,
olume

oduce
pack

previous

PHYSICAL REVIEW E, VOLUME 64, 011402

1063-651X/2
Entropy-driven phase transition in binary mixtures
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Based on the principle of entropy maximum, a transparent method to study the phase separation is pr
The excluded volume effects of binary mixtures of hard spheres with two different diameters are analyz
the role of entropy is emphasized. As a result of the entropy variation caused by the packing of large s
there is a critical volume fraction to denote the phase boundary. It is shown that the variation of free v
fraction is influenced by the ratioa5dL /dS of large to small sphere diameters and the ratiox5hL /(hL

1hS) of large-sphere volume fraction to the total volume fraction of large- and small-spheres. We intr
a modification factorb to describe the overlap degree of two large spheres excluded volumes when they
together. The critical volume fractions for large-sphere packing with different values ofa andx are calculated,
and the corresponding phase boundaries are determined. Our results are in quite good agreement with
experimental measurements.
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Suspensions of spherical colloidal particles in solve
have attracted considerable attention because of their
thermodynamic properties and their industrial and med
utilities. Experimentally, it has been observed that, with
creasing sphere concentration, there is a progression
colloidal fluid to a phase of fluid and crystal in coexistenc
and to a fully crystallized phase@1–6#. The computer simu-
lations with Monte Carlo and molecular dynamics metho
also predicted so@7#. Theoretically, colloidal particles ma
be considered as hard spheres, therefore, systems cons
of hard spheres are very important. The well-known equa
of state due to Carnahan and Starling~CS! @8# has usually
been used to calculate phase diagrams of binary hard-sp
mixtures with modifications such as the small spheres
sided in a reduced volume, which depends on the volu
fraction of the large spheres. The equilibrium conditions
involved in the chemical potentials as well as osmotic pr
sures of large and small spheres. The reduced volume ca
determined by the geometric argument@2#, or by comparison
of the chemical potentials of small spheres in an ideal
with that in a binary hard-sphere fluid under Percus-Yev
approximation@9#. But all these theoretical results are low
than the experimental measurements@2#. Recently, Velasco
et al. @10# have given the phase diagram of a binary mixtu
of hard spheres through a first-order perturbation theory
the agreement with computer simulations is good. To disc
the subject of hard-sphere packing caused by the exclu
volume effects, or ‘‘depletion’’ force, however, we are goin
to study the problem in a new approach. Our approach
pay much attention to entropy of hard-sphere systems. S
the diameters of large and small spheres have been incl
in a theory@11#, which is a generalization of the CS equatio
from pure fluids to mixtures of hard spheres, the effect
free volume on free energy or entropy can be studied
rectly, and the phase diagrams can be determined by entr

As is well known, the excluded volume plays an impo
tant role for systems consisting of hard spheres, becaus
free energies of these systems are entropy dominant, an
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entropy is related to the volume accessible to hard sphe
In a binary suspension of hard spheres with two differ
diameters,dL and dS , for the large and small spheres, r
spectively, the center of mass of a small sphere cannot p
etrate within dS/2 away from a large-spheres’ surface,
there is a region of ‘‘excluded volume’’ surrounding each
large spheres. When the surfaces of two large spheres c
near each other within a small-spheres’ diameter or the la
spheres contact with the wall of container, the exclud
volume regions overlap, as shown in Fig. 1, so that the v
ume accessible to the center of mass of a small sphe
increases and the total entropy of the system also increa
However, the large spheres do not pack when the concen
tion of the system is low. In fact, there exists a critical co
centration above which the colloid varies from the flu
phase to a coexisting phase of fluid and solid, and the sp
packing takes place.

In this paper, we study the binary mixtures of large- a
small-hard spheres by entropy and find out the critical c
centration or its corresponding volume fraction, and th
some concrete examples will be given for large-sphere pa
ing in several special cases. Furthermore, the factors
may affect the critical volume fraction, such as the ratio b
tween large- and small-sphere diameters, and the ratio
tween their volume fractions, are discussed.

We consider a container with a fixed volumeV. In the
container there are large- and small-hard spheres with di
etersdL and dS , respectively. Generally speaking, the e

FIG. 1. Schematic diagram for excluded volume effect. T
center of each small sphere is excluded from a layer of thickn
dS/2 around a larger sphere and along the wall of the containe
©2001 The American Physical Society02-1
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tropy S of this binary system consisting of hard spheres
closely related to the numbers of large and small spheresNL
andNS), the free volumeVf , and the temperatureT, so that
it can be written as

S5S~NL ,NS ,T,Vf !. ~1!

It is reasonable to assume that the small spheres do
pack together, thus the numberNS of small spheres does no
change, whenever the large spheres aggregate or not. O
ously, when a part of the large spheres has packed toge
the numberNL of isolated large spheres decreases and
free volumeVf for small spheres will have an increment.
the temperature is invariable, the variation of the entropS
can be written as

dS5
]S

]NL
dNL1

]S

]Vf
dVf5S ]S

]NL
1

]S

]Vf

dVf

dNL
D dNL . ~2!

According to the second law of thermodynamics, any ha
sphere system must evolve in order to make its entr
maximum. In Eq. ~2!, when @]S/]NL1(]S/]Vf)(]Vf /
]NL)#.0, the large spheres do not pack together beca
the decrease of entropy caused by the variationdNL due to
large-spheres’ packing dominates over the entropy increm
caused by the increase of the free volume,dVf . However,
when @]S/]NL1(]S/]Vf)(]Vf /]NL)#,0, the case is jus
the opposite, the large spheres tend to pack because th
tropy contribution from the increase of the free volume d
to large-spheres’ packing plays a leading role. The criti
case happens whendS/dNL50. Therefore, there exists
critical number (NL)c of large spheres for the system. Sin
the volume of the container is assumed to be fixed, the
ume fractionh can be ascertained if the number of ha
spheresN(5NL1NS) is known, so the variation of entrop
S with N is actually equivalent to its variation with the fre
volume fraction.

Equations~1! and ~2! are useful for us to analyze th
problem of sphere packing qualitatively and to predict
relation between entropy and free volume. In order to a
lyze the problem more exactly, we are going to deal with
quantitatively from the number of spheres through the g
eralized CS equation@11#. In a binary mixture composed o
NL5cLN, large spheres with diameterdL and NS5cSN,
small spheres with diameterdS ~wherecL , cS are concentra-
tions of spheres satisfyingcL1cS51), the mean volumev
and mean diameterd of a sphere have the following relatio

v5
p

6
~cLdL

31cSdS
3!5

p

6
d3.

Mansooriet al. @11# provided a convenient and accura
thermodynamic description of the above system and, in p
ticular, derived an expression for the Helmhotz free ene
Fhs , and then Umaret al. @12# gave the corresponding ex
pression for the total entropyShs , which is divided into four
parts as

Shs5Sgas1Sc1Sh1Ss , ~3!
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Sgas5NkB lnFeVS emL
cLmS

cS
2pkBT

h2 D 3/2G ,

Sc52NkB~cL ln cL1cS ln cS!,

Sh52NkB~§21!~§13!,

and

Ss5NkBH 3

2
~§221!y11

3

2
~§21!2y2

2F1

2
~§21!~§23!1 ln §G~12y3!J ,

where V5V/N is the average volume of each sphe
mL (mS) is the mass of a large~small! sphere, and the pa
rameters are defined as follows:

§5~12h!21, ~4!

y15
cLcS~dL1dS!~dL2dS!2

d3
,

y25
cLcSdLdS~cLdL

21cSdS
2!~dL2dS!2

d6
,

and

y35
~cLdL

21cSdS
2!3

d6
.

Here we define the constante52.718 28, the volume frac
tion h5v/V, and thus the free volume fraction 12h. It is
easy to show thaty11y21y351.

The correctness of Eq.~3! has been tested by the molecu
dynamics and Monte Carlo simulations, and also by the
perimental results for liquid alloys@12–14#. It was found to
be in good agreement with numerical results except for
cases of the higher densities and/or for larger diameter ra
In higher small-sphere concentrations, this significant dev
tion may be caused by the changes of geometry pack
where the larger spheres are not close packed, due to
oscillatory behavior of the entropic interactions, as shown
recent experimental results@13#. Obviously, the entropyS
varies with the numberNL , the concentrationscL , cS , the
volume fractionh ~or the free volume fraction 12h), the
diametersdL , dS , massesmL , mS , and temperatureT of the
hard-sphere system, but the relation between them is v
complex, so we would try to solve it numerically.

We first discuss the variation of the free volume fracti
(12h), caused by large-sphere packing, which by defi
tion, leads to

d~12h!

dNL
52k18h, ~5!
2-2
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TABLE I. Measured and calculated volume fractions of the phases at equilibrium.

Sample dL(mm)/dS(mm) Modification MeasuredhL
msur/hS

msur CalculatedhL
calc/hS

calc

1 a50.460/0.069 b50.63 (0.055660.0054)/(0.179860.0059) 0.05559/0.16801
2 56.7 (0.025160.0019)/(0.189360.0020) 0.02511/0.19551
3 (0.0171960.00066)/(0.197060.00022) 0.01718/0.20367
4 (0.008760.0013)/(0.216860.0026) 0.00869/0.21311

5 a50.605/0.069 b50.60 (0.0070960.00086)/(0.220460.0024) 0.00702/0.21932
6 58.8 (0.012060.0013)/(0.210660.0026) 0.01206/0.21121
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k185
dL

3

cLdL
31cSdS

3
. ~6!

From Fig. 1, it is evident that only some excluded volume
two large spheres overlaps when they pack together, and
free volume released is diameter dependent. In order to
cate a liquidus curve where a binary liquid coexists with
dense solid of large spheres, Eq.~5! should be modified. As
a first step toward this goal, we introduce a modificati
factorb in Eq. ~5! to effectively take into account the chang
of the overlap region due to the large-sphere packing, i.e

d~12h!

dNL
52bk18h52k1h ~7!

with

k15bk185b
dL

3

cLdL
31cSdS

3
, ~8!

where the factorb stands for the degree of the overla
therefore, it is concerned with the diametersdL , dS and the
concentrationscL , cS .

For further discussion, we make a transformation onV
via Eq. ~4!, and haveV5v§/(§21). The liquidus curve is
determined by the condition (dShs /dNL)50, which leads to

2k1y3§31@~11k3!y313k1y2#§21@2~11k3!y3

13~11k2!y223k1~y21y3!1k1#§

2~11k3!y3ln §1 ln~§21!

5 lnFevS emL
cLmS

cS
2pkBT

h2 D 3/2G1
3

2
cSln

mL

mS
2 ln cL

1@3~11k2!y213~11k3!y32k1y31k1#21, ~9!

where

k25
cS2cL

cL
1

cS~dL
22dS

2!

cLdL
21cSdS

2
2

2cS~dL
32dS

3!

cLdL
31cSdS

3
,

and
01140
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k35
3cS~dL

22dS
2!

cLdL
21cSdS

2
2

2cS~dL
32dS

3!

cLdL
31cSdS

3
.

In principle, we can obtain a relation §
5(cL ,dL ,dS ,T,mL ,mS) from the equations above. But th
analytic expression is very difficult to get, so we try to de
with this problem by numerical calculations. From Eq.~9!, it
is obvious that the temperature, the masses, and the d
eters of hard spheres can affect the critical value.

As a first example, we consider the case in which
volume fractions of the two kinds of spheres are nea
equal, i.e., hL'hS , where hL5pcLdL

3/6V and h2

5pcSdS
3/6V are the volume fractions of larger and sma

spheres, respectively. If we define the parametersa
5dL /dS andx5hL /(hL1hS) , the concentrationcL can be
expressed ascL5x/@a3(12x)1x#. Let us take the diamete
and mass of a small sphere beingdS56.931028 m andmS
53.2310224 kg, respectively. These two parameters are
accordance with the polystyrene sphere in the experimen
Dinsmore et al. @2#. It is usual that the large and sma
spheres are all made of the same material, i.e., both have
same mass density, sodL5adS and mL5a3mS . Take a
53, b51.0, and the temperatureT5300 K, the solution of
Eq. ~9! is §c'1.5827, therefore,hc'0.3682. This value is
closely fitted to the experimental valueh5hL1hS50.18

FIG. 2. The critical volume fractionhc vs the ratioa of the
large- to small-sphere diameters atT5300 K.
2-3
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10.1950.37. Consider the variation of temperature, wh
T5280 K, the solution of Eq.~9! is §c'1.5818 andhc
'0.3678, and if the temperature is changed to beT
5320 K, §c'1.5836, andhc'0.3685. This means that th
critical volume fraction is hardly affected by the temperatu
i.e., it is nearly independent of temperature just as the ob
vation in laboratory@2#.

For the other two examplesa56.7 anda58.8, we take
the modification factor of free volume fractionb50.63,
0.60, respectively, and obtain the solutions of Eq.~9! with
different values ofx. The numerical results are listed i
Table I, in which we also cited the experimental measu
ments from Ref.@2#. The total volume fraction in fluid phas
measured and calculated arehL

msur1hS
msur and hL

cal1hS
cal ,

where the superscriptmsur and cal denotes the measure
and calculated value in the fluid phase at equilibrium, resp
tively. From Table I, it is clear that our calculations are
good agreement with the experiments. We note that
modification factorb decreases as the ratioa increases. This
is due to the fact that when two large spheres pack toget
the overlap degree of their excluded volume will decre
remarkably as the ratioa increases. However, the mann
that b changes witha will become very complex whenhL
@hS or hL!hS .

To see more clear that the critical volume fraction is
fected by the ratioa, we deal with the casehL5hS . Indeed,
as the ratioa increases, the excluded volume effect w
become more and more evident and the critical volume fr
tion will decrease. This argument has been confirmed by
experimental results@2#. It is interesting to find out whethe
our scheme can predict this behavior. The numerical ca
lation of Eq.~9! does tell us that the critical volume fractio
becomes lower as the ratioa of the large- to small-spher
diameters increases. This tendency is perfectly describe
Fig. 2. In the present case, we can approximately fit an
pression

FIG. 3. The critical volume fractionhc vs the ratio x
5hL /(hL1hS).
01140
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We now turn to consider the effect of the ratiox on the
critical volume fraction for different values ofa. For a
53.0, the numerical results for the relation betweenhc andx
are plotted in Fig. 3. We see from Fig. 3 that the critic
volume fraction increases as the ratiox increases. This indi-
cates that it is more difficult for large sphere to pack as
small sphere volume fraction decreases. The phase diag
for a53.0, 6.7, and 8.8 have also been plotted in Fig.
Obviously, below the liquidus curve, no sphere packs, wh
above it, packing takes place. From Fig. 4, on the other ha
we see that the liquidus curve ofa58.8 is higher than that of
a56.7 whenhL→0. This singularity is consistent with th
measurements listed in Table I. Our results are exactly fi
to the experiments in Ref.@2#, so the excluded volume effec
and entropy approach can be used to describe the sp
packing and the phase separation of binary colloids.

In summary, we have studied the hard-sphere packing
binary mixtures by starting from an entropy formulatio
From the discussion above, we have shown that the exclu
volume plays an important role in systems consisting of
nary hard spheres. As the overlap degree of the exclu
volume varies with the ratioa andx, we have introduced a
modification factorb, to describe the variation of the fre
volume. This variation of the free volume leads to an entro
force to drive a phase transition from liquid to a coexisti
phase of liquid and solid. By numerical calculations, we ha
shown that there is a critical volume fraction for the e
cluded volume effect, and phase boundaries can be corre
determined. Our approach is transparent and the results a
good agreements with the experiments.

This work was supported by the National Natural Scien
Foundation of China under Grants No. 19925415 and
19847003 and the ‘‘Climbing Project’’ of the National Com
mission of Science and Technology of China.

FIG. 4. Phase diagrams for different values ofa.
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